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Why Multi-agent Learning ?

» Reinforcement learning turns data/knowledge into closed-loop decision making.

» Multi-agent learning deal with interactions among the learning agents.
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Multi-agent Learning for Autonomous Driving

Traffic intersection is naturally a multi-agent system. From each driver’s perspective, in order to perform the
optimal action, he must take into account others’ behaviours.

Yield Rush

(D Rusk (2, 1) (0, 0)

scenario normal-form game

e When the drivers are rational, they will reach the outcome of a Nash
Equilibrium. It is the outcome of interaction. Knowing it can predict future.

» Real-world decision making has cooperation & competition. For each agent, how
to infer the belief of the other agents and make the optimal action is critical.

o The concept of using traffic light is in fact a correlated equilibrium.

» Many-agent system is when # of agents >> 2. |t is a very challenging problem.



Multi-agent Learning for Machine Learning

Two-player zero-sum game — Generative Adversarial Network

StyleGAN
player | player 2

minmax |E, , logD,(x)+E__,. log ( ]~ ng(Geg(Z)) ) ]

g 0



Problem Formulation: Singe-agent Reinforcement Learning

 Learn the optimal behaviour through trial-and-errors from the environment. Agent

» Modelled by a Markov Decision Process (MDP) (&, A, £, T, Py, 7)

m & denotes the state space,

m o/ is the action space,

by

B R = (s, a) is the reward function,

B T S X A XS — [0,1] is the state transition function,

State,

m 9P, is the distribution of the initial state, y is a discount factor. Action
Reward

° The goal is to find the optimal policy # that maximises expected reward:

m Discounted reward:
0
o [ L
V][(S) - Z 4 Eﬂ,g“ {Rt ‘ 50 = 9, ﬂ}
(0
m [ime-average reward:

1
V]Z'(S) = lim z %Eﬂ,@ {Rt ‘ 50 = 9, ﬂ}
=0

-nvironment

T—



Solution to Single-Agent RL

» Value-based method (learn the Q-function Q(s, a) = ¥/(s, a) + YEy. v, (s)]):

temporal difference

@ (s a)< O@.a) + a : < e % : max Q(s,,,a) — O(s.a) )

N— N—\— a

old value

old value learning rate reward discount factor o T
estimate of optimal value

new value (temporal difference target)

ZO(s,a) =E, (R(S, a) + y max Q (S’, b)) S a contraction-mapping operator.
b

» Policy-based method (learn the policy 7y( - | s,) parameterised by 6):

JO) = ) d )V (s) = ) d™s) ), mylal$)Q%(s,a), d(s)=lim P (s,= 5|50, )

=00
S5 SEy acd o .

Occupancy measure on state
AO  VoJ(m) = E, | Volog n(s,a) - Q"(s, a)| induced by following 7, in the MDP

® ®
Push the parameters towards the

direction where the reward is large




Problem Formulation: Multi-agent Reinforcement Learning

» Modelled by a Stochastic Game (&, et G Lo, Y)
m & denotes the state space,
n A is the joint-action space ! X ... X A",
8 B = RYs,a',a™) is the reward function for the i-th agent,
B T S XHA XS — [0,1] is the transition function based on the joint action,
m 9P, is the distribution of the initial state, y is a discount factor:
m Special case: n = 1 — single-agent MDP, | & | = 1 — normal-form game

s Dec-POMDP: assume state is not directly observed, but agents have same reward function.

» Each agent tries to maximise its expected long-term reward:

Vi 2(s) = Z L R s g oxn—lz. 5
=0,

0.(s,a) = R(s,a) + yE,_, [V, (5]

| State s

Many agents

Environment

State s’

(X

.................

of 2 r'(s,a',a?), r’(s,a",8%)~.

.....................

...................

- Two-player stochastic T Eeiad |
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Solution to Multi-Agent RL

» Value-based method:

m [he sense of optimality changes, now it depends on other agents !
Qi,t+1 (Sk’ ”t) = Qi,t (St’ ”t) T O‘[Ri,t+1 ) evali{Q-,t(StH» ' )} = Qi,t (St’ ”t)]
7. (s, - ) = solve;{ Q. (s, - )}

+ Fully-cooperative game: agents share the same reward function

eval,{ Q. (s, )} = max Q; (s, a)
a

solve;{ O, (s, - ) | = arg max ( max @, (s,, &, a_;))

a; a

fully fully
cooperative competitive

+ Fully-competitive game: sum of agents' reward Is zero

eval,{ Q. (s,1,-)} =maxminE_|Q, (s,a;a_)|

ma

solve,-{ O (s, - )} = argmaxminkE_ [Qi,t(st, a;, a_l-)]

o a;

m Assuming agents share the either the same or completely opposite interest is a strong assumption.



The Sense of Optimality in a Multi-Agent System

Unlike single-agent RL, “optimality” has many definitions in a multi-agent system:
| | minimal regret, [ ]| Stackelberg equilibrium, | ] evolutionary stable strategy, [ | correlated
equilibrium, | | Pareto optimal, B Nash equilibrium, etc.

Bri(ﬂ_i) = aI'g mal.X Eairviti,a‘ifvﬂ‘i lRi(ai’ a_i)]

U

Definition 2 (Nash Equilibrium)

For a stochastic game, a Nash equilibrium is a collection of policies, one for each player, T,
such that, | | |

m € BR'(n7").
So, no player can do better by changing policies given that the other players continue to
follow the equilibrium policy.



Solution to Multi-Agent RL

» Value-based method:

7; (s, - ) = solve; {Q,J (St’ : ) }

Qi,t+1 (Ska ﬂ:t) = Qi,t (St’ ﬂt) T+ a _Ri,t+1 + 7 - eval; {Qt (St+1» ; ) } = Qi,t (St’ ”t)_

m Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

|. Solve the Nash Equilibrium for the current stage game
SOlVQi {Q r (S, : )} - NaShi {Q.,t(sta ¢ )}
2. Improve the estimation of the Q-function by the Nash value function.

eval, {Q. (s, - )} = Vi(s,Nash {Q. (s, -)})

s Nash-Q operator Z *"'Q(s, a) = ES/[R(S, a) + yVhash (S’)] is a contraction mapping.



Solution to Multi-Agent RL

N
> Policy-based method (objective J(0) =E, . .[ ) Ri(s.a)]):
=]
+ Stochastic policy gradient:

Vol (8) =By aer | VologT, (a,]5) OF (s,a,a_;)

+ Deterministic policy gradient:

' (6’1') =E,, :Vei”i (ai‘si) Val-Qiﬂ (S’ d;, a—i)

ai=72'i(Sl-) -

+ Centralised training with decentralised execution methods further learn critics in a centralised way.

P <¢z) o Es,a,r,s’ :(le (S, a. a_l.) . y)z: , Y = Ri -+ }/qubtl, (S, al./, a,—i) a{:n-f<s.>

o

+ Yet, PG methods have no theoretical guarantee in even linear-quadratic games [Mazumdar 2019].
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Tractability of Multi-agent Learning

» Solving Nash Equilibrium is very challenging! + More complexity results of solving Nash
[Shoham 2007/, sec 4][Conitzer 2002]

m [he solution concept of Nash comes from game theory

but it is not their main interest to find solutions. m Two-player general-sum normal-form game:
o Compute NE — PPAD-Hard

o Count number of NE — #P-Hard
o (Check uniqueness of NE — NP-Hard

s How to scale up multi-agent solution is open-question. » Guaranteed payoft for one player — NP-Hard
o (Guaranteed sum of agents payoffs = NP-Hard

s Complexity of solving two-player Nash is PPAD-Hard
(intractable unless P=NP).

m Approximate solution is still under development. - . o
5l P o (Check action inclusion / exclusion in NE —= NP-Hard

R, (al-, a_l-) > R, (ai’, a_l-) o
€ =.75 = 50 - .38 — .37 — .3393 [Tsaknakis 2008]

m Stochastic game:
o (Check pure-strategy NE existence — PSPACE-Hard

» Equilibrium selection is problematic, how to coordinate ° Best response for arbitrary strategy — Not Turing-

agents to agree on Nash during training is unknown. computable.

It holds for two-player symmetrical game with finite time
m Nash equilibrium assumes perfect rationality, but can be length.

unrealistic in the real world.



Tractability of Multi-agent Learning

-~  NEXPTIME-hard

PSAPCE-hard
NP-hard

PPAD-hard

- Figure 1.5: Landscape of different complexity classes. Relevant examples are: 1) solving
' NE in two-player zero-sum game is P (Neumann, 1928). 2) solving NE in two-
player general-sum game 1s PPAD-hard (Daskalakis et al., 2009). solving NE
in three-player zero-sum game is also PPAD-hard (Daskalakis and Papadim-
itriou, 2005). 3) checking the uniqueness of NE is NP-hard (Conitzer and Sand-
holm, 2002). 4) checking whether pure-strategy NE exists in stochastic game
i1s PSPACE-hard (Conitzer and Sandholm, 2008). 5) solving Dec-POMDP is
NEX PTIME-hard (Bernstein et al., 2002).

Copyright: Yaodong |



As a result ....

what you Mum thinks what you think you are doing what you are actually doing
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII AgCntS can move in four dirC‘CtionS or Stay fiXC‘d,
An Artificial Intelligence Tries to Kill her Creator the target Is trying to reach the bottom fow.
§ B 11 MONTHS AGO O® READ TIME : 8 MINUTES 2 BY RAUL ARRABALES [3 LEAVE A COMMENT Ilf——————’—_—————t- —————————————— |
| - + > l .- :
v T1T— %1 TopRow 1—5— )
99 Agent 1 Agent2| | “Agent3
Spanish researchers discover a bot trying to kill her creator. This LI S
Artificial Intelligence, designed to fight in First-Person Shooter i BottomRow __1___1___1 __1 ___ 5
video games, was surprised while looking for a way to end the life | : i
|
of her creator in the real world. | e P - - y----- —> - '
’ Available Target
Blockers can move left/right to block the agents.

Something undescribable :) e 5 Two-player discrete-action
with high-dimensional continuous game in a grid world.

state-action space



As a result ....

Available online at www.sciencedirect.com
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ELSEVIER Artificial Intelligence 171 (2007) 365-377
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If multi-agent learning 1s the answer,
what 1s the question?

Yoav Shoham *, Rob Powers, Trond Grenager

Department of Computer Science, Stanford University, Stanford, CA 94305, USA
Received 8 November 2005; received in revised form 14 February 2006; accepted 16 February 2006
Available online 30 March 2007

“For the field to advance one cannot simply define arbitrary learning strategies, and
analyse whether the resulting dynamics converge in certain cases to a Nash equilibrium or
some other solution concept of the stage game. This in and of itself is not well motivated.”



As a result ....

Available online at www.sciencedirect.com
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If multi-agent learning 1s the answer,
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Yoav Shoham *, Rob Powers, Trond Grenager

Department of Computer Science, Stanford University, Stanford, CA 94305, USA
Received 8 November 2005; received in revised form 14 February 2006; accepted 16 February 2006
Available online 30 March 2007

“So, what is the question?” I believe is gaming Al, but at a meta-game level!
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Why Focus on Gaming Al ?

> “Drosophila™ to genetics is what “games” to Al research.

m Games drives the research of Al frontiers.

m Simple rules but with deep concepts.

m Designing winning strategies are intriguing, thousands of years of history.

m Microeconomic encapsulates real world business, e.g., energy system,

auction system, Uber order-dispatching.

» Games is a multi-agent system with co-evolution learners. gL == T )w%—%

=

m Great place for landing multi-agent reinforcement learning techniques.

» Games are fun by itself, and gaming business is a cash cow
for making profits.




Gaming Al on Self-driving

Autonomous driving is a “game” at the behavioural selection level.

Output: the reward (R!,...,RY) , Route SMARTS: Scalable Multi-Agent
; + Internal representation . . L

of the environment Reinforcement Learning Training

. ) yfoute School for Autonomous Driving

B'ac';'ab:; r::;i;:ge"t { Our algorithm: 7
: (CoRL 2020): we introduce a new
input output ¥ 9 e “
| kit MOT platform that supports MARL
strategy \ y . :
=t , \ training, it help MARL researchers to
([ ¥aeper) 'Z‘Z:‘:C‘;'(‘)’rr gy test their algorithms for self-drivings
— 1 In addition to video games.
Offline Mapf}
) l | Motion o ‘. .
Widels P> Localizer }State Planner } o
lTrajectory “A
Odometry a) U-tu (b)Lan e merging (d) Overtaking
Obstacle . .
Avoider - 8 e
(2§ (o »
Modifiedbrajectory
|
CO nt rOI Ier ] (e) Two-way traffic (f) Unprotected left turn
- [l Efforts o
=

D Perception SyStem Interaction Scenario Q: A Bubble Scenario
Decision Making LD A ) —| «— | Specin
System D amull > .> @, |°*
v, 8
[Badue et. al 2019] . —
Background Traffic Vehl?le Motion -
o . . . . . o o grour Physics Plan Social ts Il —
Figure 1: Overview of the typical hierarchical architecture of self-driving cars. Provider Provider || Provider || SocialAgen
TSD denotes Traffic Signalization Detection and MOT, Moving Objects Track- — :
Distributed Computing

ing.




Gaming Al on Self-driving

Autonomous driving is a “game” at the behavioural selection level.

SMARTS: Scalable Multi-Agent
Reinforcement Learning Training
School for Autonomous Driving

I R éﬂ = [T & — (CoRL 2020): we introduce a new
JJ 259 JQL 2T J}QL ) platform that supports MARL
' - @ DriveML

Q 57s et training, it help MARL researchers to
e { ST R test their algorithms for self-drivings

(d) Overtaking

m SMARTS has by far the most comprehensive suite of = SMARTS creates many interesting research
MARL algorithms implemented and benchmarked. questions, e.g., robustness in MARL.

Welcome to the 2019

E
g | Agent L JAgent\ Autonomous Vehicles h
» o\ | ool e | 1] oo 1 < S LI .
| — ) o3o |J'L o3 O Challenge N / -
Environoment Afnt — ‘ Environoment JAgent\_ Environoment r_/A"tfm\1 / )5 }
O . O . 020 - I
L> T

o
[ — (| - || A
P v - P 4 egister Now
b Agent -~ v Agent b Agent - O © [E— :
P ONO P ONO P ONO - 2) U-tu .
@) (5) (6) ’ - ' | .

| (1) all agents share one model (2) each agent uses different model (3) agents share model within group - If we PUt winner mOdels together th ey Crash’
y :

® DriveML Huawe N In addition to video games
: /Agent\
L o1

(4) one model controls all agents (5) centralised training with (6) fully distributed training with _.
decentralised execution networked agents (e) Two-way traffic  (f) Unprotected left turn

N

Bl sv-PPO Safety Bl PPO Bl sv-PPO Safety Bl PPO B sv-PPO Safety N PPO
B SV-MADDPG 1.00 B MADDPG B sV-MADDPG 1(1:1\ ! MADDPG B SV-MADDPG 1.00 I MADDPG
SV-CommNet N CommNet SV-CommNet /\‘ CommNet SV-CommNet ) CommNet
et 4}
0 7 0,50
/ 0.25 J 0.25 \ Interaction Scenario N .
Diversity Diversity Diversity | Q: : Bubble | - Scenario
| Agility { P00 Agility e LY Agility = = i@ [ || Skechn
“ \ ! \ M1 )Ty~ > Seios IEE) o
\ ; =
y . S
S 74 ‘ Vehicle Motion | (= c
\'\/ Background Traffic Physics Plan -
- Provider ys . Social Agents <
, , Provider Provider
Stability Stability Stability
Distributed Computing

(a) Two-Way (b) Double Merge (¢) Intersection




Why Zero-sum Games in Particular ?

* Many questions in machine learning itself are inherently zero-sum.

m [raining GANS.

Bl s of Poker gamies, chiess, GO, stock market, etc.

m [he idea of maximising the worst-case scenario, I.e., robustness.

» [wo-player Zero-sum games in tabular case has solution.

()
OSN O

m | here are many ways to solve a two-player zero-sum games, e.g,, LE minimising rget. —
m |[n many-player case, there exists standard evaluation algorithms, e.g.,, NashConv / exploitability.
* There are still a lot of very hard open-questions in the zero-sum games.

m For example, how to find a saddle point in non-convex non-concave setting. This in turn can help better
understand the tools we are developing in the deep learning era.



Multi-agent Learning for Gaming Al

Great advantages have been made in 2019!

Jan 2016 Dec 2017 July 2018 Jan 2019 Apr 2019 July 2019 Sep 2019

e ———————————————————————
AlphaGO Series

AlphaStar (DeepMind) Pluribus Poker (FAIR)

c R T
3 StARRAET

technigue of single-agent FE; e - — =

decision-making Is mature
Dota2 (OpenAl) Hide and Seek (OpenAl)

techniques of multi-agent decision-making is getting mature !



Our Goal: to find some good policies that can solve the game

Output: the reward (Rl, S RN)

L)

Black-box multi-agent
game engine

Our algorithm:

output

=)

“good”

strategy
L , 7Z'N’*)

Multi-agent policy evaluation

(7

Multi-agent policy improvement

Input: a joint strategy (71'1, o 7Z'N)
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A Naive Self-play Approach to Our Goal

» Let’s do the alchemy for multi-agent learning.

m Define the “good” to be winning ratio/maximising reward.
m Select one learning algorithm: PPO/TRPO, MADDPG/QMIX.
m Select one hyper-parameter tuning model; e.g., PB1 [Jaderberg 201 /]

m Start to self-play: iteratively do best response.

* Master equation of designing gaming Als for any types of games. —
self-plays

(71'1,72'2) oy (71'1,71'2’* = Br(ﬂl)) e (71'1’* = Br(ﬂ'z’*),ﬂ'z’*)

e



A Naive Self-play Approach to Our Goal

o Let’s formulate the self-play process.

= Suppose two agents, agent | adopts policy parameterised by v € R¢ and agent 2 adopts policy w € R¢
They can be considered as two neural networks.

m Define a functional-form game (FFG) [Balduzz 2019] to be represented by a function

Q. VXW |

m () represents the game rule, it is anti-symmetrical.

m ¢ > 0 means agent | wins over agent 2, the higher ¢(v, w) the better for agent |.
m with ¢, (*) := @(*,W), we can have the best response defined by:

' = Br(w) = Oracle(v, ¢, ( - )) st. @ (V) > ¢, (V) + €

m Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example
PPO + PBT as we have mentioned early, or other optimiser such as evolutionary algorithm.

.....




A Naive Self-play Approach to Our Goal

o Let’s formulate the self-play process.

71'1,71'2) — (71'1,71'2’* — Br(ﬂl)) — (71'1’* — Br(ﬂ"z*),ﬂ'z’*) (71'1, 71'2) = (771, i Br(ﬂ'l))
" Algorithm 2 Self-pla Or, ~ Algorithm 1 Optimization (against a fixed opponent)
ey | even worse
 input: agent v; 1 ~ input: opponent w; agent v
fort=1,...,7T do j ‘ 2)’; ‘;bJ:eClu"e ‘r’bgj (:12)
Vil Ay OraC|e (Vta ¢Vt (‘)) Vil (; Qr,ac|e (Vt, ¢w('))
end for end for
Olltpllt: V7141 ; output: v

Recall v’ := Br(w) = Oracle(v, ¢, (- )) st. @ (V) > ¢ (V) + €



The Naive Approach of Self-play Will Not Work

Question: Can we use it as a general framework to solve any games!

Algorithm 2 Self-play
input: agent v,
fort=1,...,T do

Vi1 < oracle (v¢, oy, (o))
end for

output: v,

It depends. In most of the games, It does not work.



The Naive Approach of Self-play Will Not Work

Scissors

beats paper

» See some counter-examples

» Rock-Paper-Scissor game:

0 1 -1
— |, 0 1

1 — | 0_

* Disc game:

0, —1
¢(V,W)=VT° (1 O )‘W=V1W2_V2W1

Policy of Agent 2
lterations

0.0
0.0 0.2 0.4 0.6 0.8 1.0

» or any games that meets the Conservation law

[ O(v,w)-dw =0, Vve W
1%




Theoretically, Self-play Does Not Work

° Every FFG can be decomposed into two parts [Balduzzi 201 9]

FFG = Transitive game @ In-transitive/Cyclic game

° Letv,w € W be a compact set and ¢(v, w) prescribe the flow from v to w, then this is
a natural result after applying combinatorial hodge theory [Jiang 201 1].

* If we define gradient, divergence, and curl operators to be
grad(f)(v, w) := f(v) — f(iw)
div(¢)(v) := jW d(v,w) - dw operators from basic calouus
curl(@)(a,v,w) := (u,v) + ¢(v,w) — ¢p(u, w)

* We can write any games ¢ as summation of two orthogonal components

¢ = grad o div(¢p) + (¢ — grad o div(¢))
e Bt J

‘Transitive game‘ ‘Cyclic game‘




Theoretically, Self-play Does Not Work

» Every FFG can be decomposed into two parts

FFG = Transitive game @ In-transitive/Cyclic game

 Transitive Game: the rules of winning are transitive across different players.

¥, beatsy, 4, v, (Deatsy, — y Dealsy

s Example: Elo rating (EX{i) offers rating scores f( - ) that assume transitivity.

P (v, w) = softmax(f(v) — fiw))

m |arger score means you are likely to win over players with lower scores.

m Elo score is widely used in GO, Chess, Battle of Arena.

= This explains why you don’t want to play with rookies, when f(v,) > f(w),
Vo (v, W) = 0



Theoretically, Self-play Does Not Work

» Every FFG can be decomposed into two parts

FFG = Transitive game @ In-transitive/Cyclic game

» Cyclic Game: the rules of winning are not-transitive across different players.

v, beatsv,_;, Vv, | beatsv, » v,_, beatsy,_,

= Mutual dominance across different types of modules in a game. This is commonly
observed in modern MOBA games.

« "IN

m For this types of game, self-play is not helpful at all because transitivity
assumption does not hold. Self-play will lead to looping forever.



Physical Meaning of Decomposition in Normal-form Games

* Any normal-form games can be decomposed into two parts [Candogan 2010]:

Normal-form Game = Potential Game @ Hamonic Game

+ Transitive (Potential game): the single-agent component in the multi-agent learning.

Eﬂ,-,fr_,- [ R (s, aﬁ, Cls_i)]_Eﬂ,-’,ﬂ_i [Ri (s, a;i, as—i)] -- “ -
y) 1

=E, . [9’ (5.0 as_i)] =0 [99 (s.q4. as_i)] (2,1) (0, 0)

+ Cyclic (Harmonic game): the origin of limited cycles, uniformly random strategy is always a Nash.

S

y; / N=
(a,a,a) > (a,a,b) | |

+ Example of decomposition:

R P S R P S R P S R P S
R| 00 | —3z.3z | 3y, -3y et Rl—2),y—2) | y—2),@-2) | (y—=2),(z—-y) R 0,0 —(@t+y+2),(z+y+2) | (z+y+z),—(z+y+2) R[(z—y),(x-y) | (z-2),(@z—y) | (y—2),(z—y)
P |3z,-3z| 00 | —3z3z i Pl(z—2),@y—2) | (z—2),@&—2) | (z—2),(—y) + P | (z+y+2),—(r+y+2) 0,0 —(z+y+2),@+y+2) + P|l(z-vy),(z—2) | (z—2),(z—2) | (y—2),(z—2)
S _3y’3y 32,—32 0,0 S (z—y),(y—x) (Z—y),(.’E—Z) (z—y),(z—y) S —(m+y+2),(x+y+z) (-’B+y+z),—(ﬂ3+y+z) 0’0 S ((L‘—y),(y—Z) (z—x),(y—z) (y—Z),(y—Z)
(a) Generalized RPS Game (c) Potential Component (d) Harmonic Component (b) Nonstrategic Component




Visualisation of Transitive and In-transitive Games

° Let us define the evaluation matrix for a population of N agents to be

Api={(wow) : (W, w) €BXP| = p(BDP)

Almost Transitive Mixed Almost Cyclic Random
YT SEIas TSRS . R B R g R R R RS AR B y”
:.- " : :Eiﬁ . '. . '==E' 255'1 'u' "
i BN R x g
.' n::: """" ui.o. z ':.a : ii:=5.
- ..l : u E' T :ég E it ]
" " . == 3555:! ' J
. - .= pT Sand seses
$: .. . iteemg s
st 3 B b 853 Beeel. -
- -'-.. =:gl
.:-::::ﬁ.(vi ’ W) i bt SR i
i el fojs o Dhiladi e Rl B
LR T 8 "E.8 0.2 faiis, i
L= e @&
| *%e Q. ° ‘.'O > °
o0 ° . e el o
V 9]
c : " ) A
» ¢ ) e ..‘.‘ ’
% > o »® ©r
@] .
t KL ¢ . ane*® o
o

Figure 1. Low-dim gamescapes of various basic game structures. Top row: Evaluation matrices of populations of 40 agents each;
colors vary from red to green as ¢ ranges over [—1, 1]. Bottom row: 2-dim embedding obtained by using first 2 dimensions of Schur
'decomposition of the payoff matrix; Color corresponds to average payoff of an agent against entire population; EGS of the transitive game

is a line; EGS of the cyclic game is two-dim near-circular polytope given by convex hull of points. For extended version see Figure@in |
the Appendix.

[Balduzzi 2019]




Empirically, Self-play Did Not Work Either!

If we put the top-3 winner models together into one map,
the top player will no longer perform the best.

www.drive-ml.com

Huawei UK Challenge

Welcome to the 2019

DriveML Huawei \
Autonomous Vehicles o
Challenge > \\

Number of Submissions

Participants: 250+, Submission: 1300+

Number of Submissions (Daily)

>
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Empirically, Self-play Did Not Work Either!
Example on training AlphaStar:

o self-play can give you agents that are strong in terms of Elo, however, if one makes it
compete against its previous strategies, it still loses.

» This shows that naive self-play will not work in real-world games simply because the
cyclic dynamics, or; in other words, the agent will forget what has learned.

. € Multi-agent learning d Multi-agent learning

DFSP + SP 1,540 OFSP + SP 71%

. D

PFSP 1,273 OFSP 70%

FSP 1,143 FSP 69%
T T T 1 T T T 1
0 600 1,200 1,800 2,400 0 25 50 75 100
Test Elo Min win rate vs past (%)

Vinyals 2019, Table 3]
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The Lesson: Understanding Game Structures are Ciritical !
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Recall Our Goal

Output: the reward (Rl, s RN)

1

> AT 2T = i . = AR Gaie - g -, S s Anitid = e -7
| o = - o 5.6 @ . - - >y g - - o ) ¥ > e - - - : - -
Y e P IERT O e e Lol O LT < T R B T S G- £ 2 ) TR AT D i Y T
S i z 4 K TR -TY B X o” S Lo Terg 2 LT 2= LT

¢  Black-box multi-agent
game engine

Our algorithm:

e s OUTPUL

“good”

strategy
e , 7Z'N’*)

(7

Input: a joint strategy (le, o JZ'N)



Real World Games Look Like Spinning Tops.

®*Real-world games are mixtures of both transitive and | Game geometry Game profile

in-transitive components, e.g., Go, DOTA, StarCraft Il. t y .
............................................................................ z 53
Nash of the game L. E': g 2
o 2 :

: 3 ¢ 5 o 5
® Though winning is often harder than losing a game, 3 ;3
finding a strategy that always loses is also challenging. Non-transitivity 5 22
duall g 2

disappears o

(Section 2) 5’

® Players who regularly practice start to beat less skilled
players, this corresponds to the transitive dynamics.

Extremely
non-transitive

® At certain level (the red part), players will start to find (Theorem1)
many different strategy styles. Despite not providinga Agents trying
universal advantage against all opponents, players will tolose
counter each other within the same transitive group.
This provide direct information of improvement.

Non-transitive dimension
e.g. length of the longest cycle
or Nash cluster size

Non-transitive
cyclic dimensions

' - Figure 1: High-level visualisation of the geometry of Games of Skill. It shows a strong transitive |
ey playe [ EDEeR 0 the hlgheSt Ievel’ e slils W) dimension, that is accompanied by the highly cyclic dimensions, which gradually diminishes as skill
strategy styles, the outcome relies mostly on skill and grows towards the Nash Equilibrium (upward), and diminishes as skill evolves towards the worst|
| icul | J;( /I\/l‘l\ )\‘\ - 21K  possible strategies (dlownward). The simplest example of non-transitive behaviour is a cycle of length|
ol el Pal"tICU S sdils St)’ €3 ( I /] 3Z). -3 that one finds e.g. in the Rock Paper Scissors game.

[Czarnecki 2020]



Understanding the game structure helps develop solutions

We should have a clear idea of why we use a method rather than hacking by trail and error from
the beginning. Never use “reinforcement learning” to design reinforcement learning algorithms!

State of the art Al MinMax No-learning * where
o self-play
in Real World Games
Search Self-play
Reward shaping Co-play
MinMax Tree Search Any small game
Go
AlphaZero Go, Chess, Shogi Strong priors Fictitious Play

OpenAl Five DOTA

2epMind FT\ Quake lll CTF
AlphaStar StarCraft Il Imitation init Population Play
Pluribus Poker

Algorithm Game Agent stack Multi agent stack Geometry
Initial transitive Robuesteness to Coming from the
strength in a top non-transitivity agent stack

[Czarnecki 2020]
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The Necessity of Studying Meta-games.

» An important intuition of solving games is to train many policies, a population of them. In RPS, if we
have a population of three players, each of them plays R/P/S, and we randomise over which player to

pick, then no one will ever be able to exploit us.

» On the other hand, enumerating every possible atomic state-action pairs is impossible for real-world
games. Ve have to model on the higher-level policy level, e.g., aggressive/passive styles of policies,

rather than state-action level.
» Understanding meta-games can help design both new games, and, new game solvers.

o |tis called a meta-game, or, empirical game, or, the problem problem, or, autocurricula.

State s’ | v_j.;zg::,:gm

; 2 polcy! Sei |
| State s a model l:l S i2
_ .. s" ~pl.ls,a',a?%) '
atomic e ey b
action g i l
D T Boyes .
T, Sresiied shift focus to a ='¢(V W)
Two-player stochastic RN, meta-game tt_; ot )
game example J 5 P




Terminology on Meta-Games.

* In the meta-game analysis, we assume a player can have many copies of itself, each of
the copy can play different strategies.

 The “policy” in meta games mean how many copies of that player in the population
play that particular type of policy, namely, a policy of policy.

Reinforcement Learning Meta-game Analysis
environment game game
agent player population
action action type
policy strategy distribution over types
reward payoft fitness




How Does Meta-games Look Like

More examples of meta-games on AlphaGO and AlphaStar.

| Extended Data Table 9 | Cross-table of win rates in per cent between programs

Oryp Qyp Qrp Qry Oy Ay Qp
> pOIiCy/ - 1 [0; 5] 51471 0[0; 4] 0 [0; 8] 0 [0; 19] 0 [0; 19]
a model
Olyp 99 [95; 100] - 61 [52; 69] 35 [25; 48] 6 [1:27] 0 [0; 22] 1 [0; 6]
Olrp 95 193:96] 39 [31; 48] - 13 [7; 23] 010;9] 0 [0; 22] 411,21]
oy 100 [96; 100] 65 [52;75] 87 [77; 93] - 01[0; 18] 29 [8; 64] 48 [33; 65]
o 100 [92: 100] 94 [73; 99] 100 [91; 1001 100 [82; 100] - T8 [45; 94] T8 [71; 84]
Ly 100 [81; 1001 100 [78; 1001 100 [78; 100] 71 136;92] 22 [6;55] - 30 [16; 48]
| o8 100 (81:100] 99 1[94;100] 96 [79; 99] 52 [35;67] 22 [16;29] 70 [52; 84] -
CS 100 [97; 1001 74 [66; 81] 98 [94; 99] 80 [70; 87] 513;7] 36 [16; 61] 8 [5; 14]
ZN 99 [93;100] 84 [67;93] 98 [93; 99] 92 [67; 99] 6 [2;19] 40 12,771 100 [65; 100]

Uiler 2016, [able ]

Progression of Nash
of AlphaStar League

Training Days

W
U%M

14

| I
0 100 200 300 400
Agent ID

. THE NASH DISTRIBUTION OVER COMPETITORS AS THE ALPHASTAR LEAGUE
PROGRESSED AND NEW COMPETITORS WERE CREATED. THE NASH
DISTRIBUTION, WHICH IS THE LEAST EXPLOITABLE SET OF COMPLEMENTARY
| COMPETITORS, WEIGHTS THE NEWEST COMPETITORS MOST HIGHLY,
DEMONSTRATING CONTINUAL PROGRESS AGAINST ALL PREVIOUS
COMPETITORS.

[ AlphaStar blog]



The Target of Studying Meta-games.

* In the meta-game analysis, we can ask two critically important questions:

Our algorithm:

|. How can we evaluate the population of policies in a
meta-game, especially games with limited cycles?

1. Multi-agent policy evaluation

2. How can we develop new policies based on the existing (RS Y I o e fere T et

pbopulation of policies?




Relationships between Meta-games and Underlying games

[ Tuyls 2018] proved that a Nash for meta-game is an approximate Nash for the underlying game.

K
" Define the Nash for the N-player K-strategy meta-game to be x = (x!, ..., x"), 2 le — L Vie N

EENX [fl(il')] — me}x E]Z.—-iNx—i lf'l (Jl'i, ﬂ_i)] ,VieN

JT

i

= If we define the reward of the underlying game to be r'(z', #7%), r' = E[#*], and € = sup | #(x) — ri(z)|

7,1

Distance to the Nash l e ) I
maxkE = - [r (71' , TT )] =g [r (71')]
T

of the underlying game

<SmaxkE. . .. [fi (Jl'i, ﬂ_i)] =0 [?i(ﬂ)] +maxE ;- [ri (ﬂ'i, ﬂ—i) o (Jl'i, n"i)] -E__. [ri(ﬂ) - Ai(ﬂ)]

T

-~

~

=0 since x is a Nash equilibrium for # <e

< 2¢
° One can further use Hoeffding equation to have a finite-sample bound on how many samples 7 are

<€

needed in order to control € with high probability 1 — 6.

KN+1

P< sup ‘ri(n) — f'i(ﬂ')‘ < e) > <1 — 26(_262”)>
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Policy Evaluation on Meta Games via Elo Ratings

* Elo create a rating (7, . . . ry) by averaging the historical performance. Assuming the true

probability of agent i beating agent j is p;; Elo approximates it by p;; = softmax(r; — r;)

through minimising the cross entropy by

CElo (sz»ﬁg') " —p,-jlogﬁ,j . (1 ey

s 1-2)

» Suppose the 7-th match pits 7 against j, and binary outcome is Sl.’,j, then the rating updates

11 o9 (S By) = - (8- 7))

Qg

» With enough race data, Elo ratings will converge to p, = p; = Zl ,historical average.

N..

n l

° Elo cannot deal with in-transitive games, since curl(logitP) = 0.

* In RPS, p;; is (1/2, 172, 1/2), thus no predictive power about the game.

» Elo can be biased by weak players that intend to lose (.

mll 737K ZE/E 51) [Balduzzi 2018].



Policy Evaluation on Meta Games via Nash Equilibrium

» Treat meta game as a normal-form game, and compute Nash equilibrium by LP.

 In two-player zero-sum discrete case, it can be solved in polynomial time. The

matrix Ay is anti-symmetrical, i.e., Agy = — A‘B’
Ag 1= {¢<Wl-, Wj) : (Wl-, Wj) e x 213} e ¢<q3 0 gp)

 The minimax theorem is a natural outcome of the duality theorem in LP.

Dual problem Minimax theorem
max v min v e
veER ) veR ' ' max minp Agqq
S.t. pTAEB >vp-1 St qTA,; <v-1 . . :
= min max pTAng

p>0andp'l =1 q>0andq'l =1 q P



Policy Evaluation on Meta Games via Nash Equilibrium

» Cons of Nash equilibrium:

m Only tractable in two-player zero-sum tabular case. Multi-player general-sum is PPAD-hard.
m |t is a fixed point due to the Brouwer fix-point theorem.

= What Nash can tell, including its generalisation such as correlated or coarse correlate equilibrium, is
the time-averaged behaviour; it tells us little about the “dynamical” behaviour of the actual system.

m But some dynamics will not only converge to Nash, but they also cycle. Or; they do not end up with
Nash at all. The following theorem can summarise.

Poincare-Bendixson Theorem:

Given a differentiable real dynamical system defined on an open subset of the plane, every non-empty
compact w-limit set of an orbit, which contains only finitely many fixed points, is either

B a fixed point
B a periodic orbit

B a connected set composed of a finite number of fixed points together with homoclinic and
heteroclinic orbits connecting these.
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Policy Evaluation on Meta Games via Replicator Dynamics

» Replicator dynamics is a framework of dynamical system that describes the time
dependencies of the players’ behaviours.

= Think of an infinitely-sized population of agents, let x; be the proportion of agents in the population

kth

who play the strategy among K—many possible strategies. In a two-player (i.e. two populations)

game, let (A, B) be the payoff matrix, RD describes the continuous-time evolution of (x, y;).

= RD only works in symmetrical game A = B' or anti-symmetrical game A = — B'.
payoff for the Kth strategy
dx;, f T dy, T T
—=x[A —XA] o v (XB) —x'B
v
current payoff against the payoff matrix for the

opponent population other population



Physical Meaning of Replicator Dynamics

» Replicator dynamics is deeply rooted with reinforcement learning.

m |n Cross Learning and finite action-set automata (RL back to the old times), with normalised reward,

0 < r < 1, we have the learning rule of the probability of selecting the i-th action as:

r—na(yr ifi=j

(i) < n(i) + {
= We can then write the expected change in policy i by:

E[AR()] = ) [E(r] — 7OE[] + Y 7)) |~ Efr1a()
J#

—n(i)r otherwise

= )|Elrl = Y, 7(DEr]]
J

= Assuming to take infinitesimal step limo — 0 in 7, 5(1) = 7,(i) + 0Ax,(i), we have

ﬂ'(l) - ﬂ'(l) El[l’] . ZJ ﬂ(_])E][ r] payoffforth:kthstrategy

% . Xk [(Ay)k e XT?)’] : % —_ yk [(XTB)k e XTBy]

current payoff against the payoff matrix for the
opponent population other population




Physical Meaning of Replicator Dynamics

» Replicator dynamics is deep rooted with reinforcement learning.

m Q-learning can be derived equivalently as a variant of RD with exploration [Kianercy 2012].

m |n the stateless RL setting, one can write Q-learning update rule as
Q(t+1)=0.0)+a [ri(t) — Ql(t)] Note, no max is needed here!

m the continuous limit of the above update rule is
Qi(t) = [’” il Ql(t)]
= and naturally, the policy withe exploration is written as
o QiIT
x(1) = > Q0T

m differentiating the Boltzmann policy w.r.t to time, we can have
X

i n n X
;i — [I’i = szl Xkrk] = Tzkzl Xklnx_k

m plug in the reward functions
= - % = x[(Ay); — x - Ay+ Ty Y xIn/x)]

payoff for the Kth strategy

' New term on t
. J entropy % =5 [(Ay)k —xT Ay] ; d_yt" = [(xTB)k — xTBy]
9, = y[(Bx); — y - Bx+Ty ) y,In(y;/y) t t

current payoff against the payoff matrix for the
] | opponent population other population




“Perhaps a thing is simple if you can describe it fully in several different ways, without

immediately knowing that you are describing the same thing” R. Feynman

» Many RL algorithms are equivalent to the variants of replicator dynamics.

m Besides Q-learning, policy gradient can also be written as RD [Hennes 2020].

- Table 4: An overview of related empirical evaluations of learning dynamics. NFG: normal-
1 form games; CNFG: continuous action normal-form games; SG: stochastic (Markov) games.

Type Algorithm Reference
NFG Q-learning Tuyls et al. (2003, 2006)
NFG regret minimisation Klos et al. (2010)
NFG FAQ Kaisers and Tuyls (2010, 2011)
NFG lenient FAQ e ooty
NFG WoLF Bowling and Veloso (2002)
NFG IGA, IGA-WoLF, WPL Abdallah and Lesser (2008)
CNFG Q-learning Galstyan (2013)
e networks of learning Vrancx et al. (2008a)
automata Hennes et al. (2009)
SG RESQ-learning Hennes et al. (2010)

[Bloembergén 20



VWhat does Replicator Dynamics suggest

bf the Sexes

olWw(O

< O

o o S
=Y (o)} o
L] 1 L]

Player 2, probability of playing O

o
N

Player 1, probability of playing O

1.0

Battle of seXes

Extended Data Table 9 | Cross-table of win rates in per cent between programs

ol
|
O |Ww

AlphaGo meta game

Olryp Olyp Olrp Olry (o7 0y oy

Qrop - 110;5] 5 (47 0 [0; 41 010: 8] 0 [0; 19] 010:19]
Olyp 99 [95; 100] - 61 [52: 69] 35 [25; 48] 61[1:27] 0 [0; 22] 1 [0:6]
Olrp 95 [93: 96] 39 [31; 48] 13 [7: 23] 010:9] 0 [0: 22 411:21]
Olry 100 [96; 100] 65 [52;75] 87 [77: 93] 010;18)] 29 [8; 64] 48 [33; 65]
o 100 [92; 1001~ 94 (73:99] 100 [91; 1001 100 [82; 100] 78 [45; 94] 78 [71;84]
Oty 100 (81; 1001 100 [78; 1001 100 [78; 100] 71 [36; 92] 22 [6; 55] 30 [16; 48]
ap 100 (81;100] 99 [94;1001 96 [79; 99] 5235;671 22 [16;29] 70 [52; 84]

cS 100 [97; 100] 74 [66; 81] 98 [94;99] 80 [70; 87] 513,71 36 [16; 61] 8 [5;14]
ZN 99 [93;100] 84 [67;93] 98 [93; 99] 92 [67; 99] 612,19 40 [12;771 100 [65; 100]

o
o
1

o
'S

Player 2, probability of Playing [

0.2}

0.0 0.2 0.4 0.6 0.8 1.0
Player 1, probability of playing D

Prison’s Dilemma

O

AlphaGo

L8 . Q

m p

Figure 2: Trajectory plot for the 2-face consist-

ing of strategies a,vp, @up, Arp

AlphaGo version comparison
[ Tuyls 201 8]
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Figure 3: Intransitive behaviour for a., ap, and
Zen.

AlphaGo version comparison




Solution Concept of Replicator Dynamics

» The equilibrium points of replicator dynamics is evolutionary stable strategy (ESS).

ESS is new way to define “optimality”, similar to the optimality defined in Nash means best response.
ESS means the strategy cannot be invaded by any alternative strategies from natural selection.

ESS is a refinement of Nash, it is a special type of Nash that is evolutionary stable.

On a symmetrical game, Nash equilibrium is:

Ron) = Rt ., T =7

ESS refines Nash:  R(z, 1) > R(#,7) & R(w,7n') > R(zx',n'), #' # =

Examples of Nash that is not ESS, (A,A)/(B,B) are Nash but only (B,B) is ESS. A is not an ESS, so B
can neutrally invade a population of A strategists and predominate, because B scores higher against B

than A does against B.

A B

Al 22 | 1.2 | | A cannot dominate B, since R(B,A)=R(A,A)
Bl 2 1 » » | | but B can dominate A, since R(B,B)>R(A,B)

' Harm thy neighbor |
T ——



Pros & Cons of Replicator Dynamics

 Pros of RD

m RD offers continuous-time dynamics, compared to fixed point Nash, provide insights into micro-
dynamical structures of games, e.g., flows, basins of attraction, and equilibria.

m |t provides a new angel to evaluate the policies in a game from a population perspective.

m The solution concept describes the stability in the sense of evolution (fLREZ5K).

m |t can sift out unstable Nash equilibrium, e.g. the (2/5, 3/5) in battle of sexes.

o Cons of RD

m |t can only apply on two-player several-policy meta game due to the inherently-coupled dynamics.

= |t cannot work on general-sum games, the payoff has to be either symmetrical game A = B', or

asymmetrical games A = — B .

m The equilibrium is not unique.
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Weakness of Evaluation Metrics for Meta-games so far.

» Elo rating:
m cannot deal with in-transitive games.
m cannot tell the dynamics of strategy strength/weakness.
m cannot stay unbiased to redundant weak agents.

» Nash equilibrium:
m cannot scale to more than two players in nhon-zerosum games.
m cannot guarantee uniqueness of equilibrium.
m cannot tell the dynamics of strategy strength/weakness.

 Replicator dynamics:
m cannot scale to more than two players.

= cannot deal with general-sum games (either A = B' or A = — B').
m cannot guarantee uniqueness of equilibrium.

» Key requirements: in-transitive, dynamical, multi-player, general-sum, tractable, unique, stable.



a-Rank: A General Solution Concept for Game Evaluation

o-Rank: Multi-Agent Evaluation by Evolution

father of PPAD class
Shayegan Omidshafiei*!, Christos Pagadimitriou*3, Georgios Piliouras*?, Karl Tuyls*',
Mark Rowland', Jean-Baptiste Lespiau’', Wojciech M. Czarnecki', Marc Lanctot!, Julien

Perolat', and Remi Munos!

'DeepMind, 6 Pancras Square, London, UK
2Singapore University of Technology and Design, Singapore

3Columbia University, New York, USA
“Equal contributors, ordered alphabetically. Corresponding author: Karl Tuyls <karltuyls@google.com>.

a=Rank is a nhew type of evaluation metric that can
m deal with both transitive and in-transitive game dynamics.
m model the flow of dynamics of strategy evolutions, rather than being a fixed point.
m scale to multi-player general-sum cases.
m tractable to be computed, equilibrium can be solved in polynomial time w.r.t the size of meta game.
m equilibrium point is unique, and, (evolutionary) stable.



a-Rank: A General Solution Concept for Game Evaluation

° We knew functional-form games and normal-form games can be decomposed:

[Balduzzi 2019] FFG = Transitive game @ In-transitive/Cyclic game

[Candogan 2010] |Normal-form Game = Potential Game é Hamonic Game

Unifying them can

: . : b d
* a-Rank is inspired by the Conley’s fundamental theorem on dynamical system: |[Biatgasses

Any flow on a compact metric space decomposes into a

[Conley 1978] . .
gradient-like part that leads to a recurrent part

» This suggests that a flow is either a part of a “recurrent chain™, or on its way to converge
to a “‘recurrent chain”.

* The “recurrent chain” component of a game corresponds to the Sink Strongly Connected
Component (SSCC) of



The Sink Strongly Connected Component of the Response Graph

o [he response graph of a game is the graph in which the nodes are joint strategy profiles,
edges indicates if the deviating player can achieve larger reward.

» Response graph assume one player changes its policy at each time.The graph is sparse!

Game Response Graph
I1
L C R
U |21 1.2 0,0 two SSCC here.
I M|1.2 2.1 1.0
D 0,0 0,1 2,2

e The Sink Strongly Connected Component (SSCC) of the response graph is the subset of
nodes in which there are no outbound edges but only inbound edges.

* A node in the flow is either a part of a “recurrent chain”, or on its way to a “recurrent chain”.



Response Graph

Modelling the SSCC through a Markov Chain

o SSCC captures the long-term dynamical interactions between agents.

* On the response graph, considering a random walk, following the edges, no matter
which node you start from, you will end up converging to the SSCC.

» This process can be modelled through a Markov Chain, and the stationary distribution
of the Markov Chain is exactly SSCC.

° Jo make sure the stationary distribution exists and unique. T he chain has to be
irreducible, meaning every nodes can “travel” to every other nodes.

* To meet such requirement, @-Rank creates a so-called, Markov-Conley chain, where the
edges are “soft’”.



a-Rank Algorithm

* a-Rank [Shayegan et al 2019] defines the transitional probability between nodes by

{ Y, Y, o) LA A, A 0. 0.0.0!

(a) (b) ()

Figure 1: Example of population based evaluation on N = 3 players (star, triangle, circle) each with |s| = 3 strategies (denoted by the
colours) and m = 5 copies. a) Each population obtains a fitness value #; depending on the strategies chosen, b) one mutation strategy
(red star) occurs, and c) the population either selects the original strategy, or being fixated by the mutation strategy.

» Physical meaning of p ﬂ_i) can be thought of as an evolutionary process above.

T a0 b (

1 : -
transition probability [ ] A l=1
of the Markov Chain Tjoin,Tjoint

1= e laass 1 Toint = Fibive
Oa if leoint\ﬁ-joind > 2



a-Rank Algorithm

» a-Rank uses @ inp, 4~ (ﬂ_i) to control the “softness” of edges in the response graph, so
s

that the Markov Chain can be irreducible.

° 2 means how likely a sub-optimal joint strategy is going to dominate an optimal joint strategy.

In experiments, it is usually set as a large number.

» The unique stationary distribution of the Markov chain is

v = lim [T]'y,
> 00

* The rank of probability mass of v is the output of a-Rank. Computing v is polynomial-time.

» The physical meaning is the evolutionary strength/stability of joint strategy profile in terms of
how strong it can resisting mutations’s invasions. Caveat: this is not the same idea as ESS.

* The connection of @-Rank equilibrium to Nash equilibrium/ESS is unclear yet.



a-Rank Summary

* a-Rank answers the question of how to evaluate/rank joint-policies.

m A solution concept based on Conley’s theorem & graph theory.
+ it can model recurrent chains (limited cycles) in dynamical system, e.g. Rock-Paper-Scissor game.
+ it is tractable in multi-player general-sum games.
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Example:

P(—vr.A @)=
P(ir;a,e)

eOl

OP(ir;a,0) 0P A,
€ + €

(a) (b) ()

Figure 1: Example of population based evaluation on N = 3 players (star, triangle, circle) each with |s| = 3 strategies (denoted by the
colours) and m = 5 copies. a) Each population obtains a fitness value #; depending on the strategies chosen, b) one mutation strategy
(red star) occurs, and c) the population either selects the original strategy, or being fixated by the mutation strategy.
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|.Collect the pay-off values for different strategy profiles.

2.Construct the Markov Chain based on 0. (ﬂ_i)

3.Compute the stationary distribution v = lim [T]tvo

- 0.
P T asTTi b ( !

[— 00

4.Rank the joint strategy profile based on probability of v.




a-Rank Results

AlphaGo version comparison

|
. j Agent  Rank Score
é AG(rvp) MUW» 1l 1¥(0);
i) AG(vp) 2 00
o AG(rp) 2 0.0
3 — e AG(rv) 2 00
Sol AG(r) 2 0.0
- AG(Y) 2 0.0
AG(p) 2 00

Biased RPS
R P S

Agent Rank Score ‘ \

R 1 0.33

B 1 0.33 /

S 1 0.33 |

R[0 [ 05 1
P | 0.5 0 —0.1
S| —-11] 0.1 0

(@) Payoff matrix.

T =10133]




a“-Rank: A Scalable Solution for a-Rank [Yang 2020]

Example:
II
L R
u|21 1,2 0,0
I M| 1,2 2,1 1,0
D|0,0 0,1 22

|. Collect the pay-off values for different strategy profiles.

2. Construct the Markov Chain based on p, . (ﬂ_l-)

3. Compute the stationary distribution v = lim [TT]tvo

=0

4. Rank the joint strategy profile based on probability of v.

Conclu5|on ‘
t1. We conjecture that solving a-Rank is still NP-‘-

. Hard because the size of the IMarkoy Chall |
exponential to the number of agents.

E

2 A polynomial-time solver on exponential- S|zed i
INnput cannot be claimed as tractable. !

3. Take TSP as example, one calnet claim 2 NP-
Hard problem solvable by just creating anj
| exponentially-sized input. - -
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- 30
Game Env. PetaFlop/s-days | Cost ($) | Time (days) o $1Trillion budget | =2
AlphaZero Go [29] 1,413 X 7 207M 1.9M $10K budget "2 @
AlphaGo Zero [28] 1,181 x 7 172M 1.6M || | 2
AlphaZero Chess [29] 17 x 1 352K 3.2K 03
MuJoCo Soccer [18] 0.053 x 10 4.1K 72 * £
Leduc Poker [15] 0.006 X 9 420 7 B
Kuhn Poker [11] < 107% X 256 <1 — s =
AlphaStar [31] 52, 425 244M 1.3M

6 eq\?ﬁ

Table 1: Time and space complexity comparison given
N(number of agents) X k(number of strategies) table as inputs.

Method Time Memory
Power Method || O (kKN*IN) | O (KV*'N)
PageRank O (kN*IN) | O (KN*IN)
Eig. Decomp. O (KNV<) O (KV+IN)
Mirror Descent || O (kN*'logk) | O (KV+IN)

Cost of Step

30
N 20
Umber of Agents 10 ) 18 1\1 0«\\)

Cost of Step 2

Cost of Step 3




a“-Rank: A Scalable Solution for a-Rank [Yang 2020]

* Novelty |: reformulate as a stochastic optimisation problem

m Though cannot improve the time-complexity, but now can do early stopping for large meta-game solutions.

m Saves time in getting the payoff values for the transition matrix of Markov chain.

Table 1: Time and space complexity comparison given |
' N(number of agents) X k(number of strategies) table as inputs. | T "ot theoint s,ttr%;?;fgr?ﬁgix
Method Time Memory . - ¥
Power Method || O (kV*'N) | O (K"V*!N) - s s
PageRank O (KN*'N) | O (KN*'N)
Eig. Decomp. O (kN®) O (kN*IN)
Mirror Descent || O (k™' logk) | O (k" *'N) N
-— ' | an‘< thetra;SItm - Stochastic Optimization
v = lim [T]" v, ; T el N
[— 00 \ 0 T
N Y 2* e E | |
min— Y (v7¢,)’ - 1log (5 ~ [v1-1] ) . |

=1 *

Adam/SGD/...



a“-Rank: A Scalable Solution for a-Rank [Yang 2020]

° Novelty 2: Introducing a heuristics to start with a subset of strategies and then
increasingly expand the strategy space of each agent, we can decrease k further.

m [ntuition: remove dominated strategy from the beginning and save the exploration time, and add any good
strategy back if we miss them wrongly in the initialisation.

*
D E F G ff -
|
C — Il
B 231,2305,1 i k
& == AN 1 Nf\ T -
== 1,1 U I Uy L H

Still tial size, make k small
All joint strategy profile involving “C" will not be SSCC, Il exponential size, Make i@ ST iCy

removing “C” can save exploration time.



Scalability of a“-Rank on Large Meta-games

Random matrices
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Figure 4: Comparisons of time and memory complexities on varying sizes of random matrices.
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Summary of Meta-game Policy Evaluation

» Give a meta-game with fixed set of players and strategies, we have introduced methods to
answer the questions of which joint strategy profile is “optimal”, specifically, we can know

mwhat is definition of “optimality”

m which metric suits transitive/in-transitive games | R
a pollc:y/_>|:I _43:
a model I:I 'y T
m which metric is tractable in multi-player games l
m which metric can deal with general-sum games l:;_!¢(vl’ Wj)
sighedt L

m which metric can induce stable equilibrium
m which metric can induce unique equilibrium

m which metric can model the flow of dynamics or being a fixed point
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